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Unified Approach to the Derivation ofXT ● ,* 4- ●

Varlatlonal bxpresslon Ior
Electromagnetic Fields

KATSUMI MORISHITA, STUDENT MEMBER, IEEE, AND NOBUAKI KUMAGAI,

Abstract—A unified procedure to deri~e the variational expressions for
electromagnetic field problems is presented. It is shown that the vari-
ational expressions for a variety of electromagnetic parameters such
as, for instance, a resonant frequency, a propagation constant, mid an
impedance matrix, can be formulated systematically all from “the

principle of least action” point of view. It is pointed out that the Maxwell’s
equations themselves can also be derived from the least action principle.

I. INTRODUCTION

T

HE variational method is one of the very powerful

techniques capable of treating a large variety of electro-

magnetic fields problems. So far, however, the appropriate

variational expressions have been derived for each specific

problem by a trial-and-error approach which is attended

with laborious and time-consuming difficulties,

To avoid such a tricky approach, the procedures which

are systematic to some extent have been proposed previously

by several authors. Rumsey [1], Berk [2], and Barrington

[3] have described the method to derive the variational

expressions by using the “reaction concept,” while Cairo

and Kahan [4] have shown that the variational expressions

can be obtained by means of “transpose operator and

field.” However, the method of “reactiori concept” lacks

uniformity in the strict sense because the definitions of

reaction are different for the three-dimensional problems

and the two-dimensional problems. In Cairo and Kahan’s

method, the physical meaning of the “transpose field” is

hard to understand and also the technical skills are still

required.

In the present paper, a unified procedure to derive the

variational expressions for the electromagnetic field prob-

lems is given from “the principle of least action” point of

view. We shall show first that the Maxwell’s equations

themselves can be yield~d from the principle of least action,

and then derive the variational expressions for a resonant
frequency, a Propagation Constant, and an impedance
matrix, systematically, all from the least action principle.

II. A REVIEW OF THE PRINCIPLE OF LEAST ACTION

It is well known that a general feature of the classical

physical phenomenon can be explained by the principle

of least action, or, in other words, the stationarity of the

actions which are suitably defined fundamental physical

quantities such as energy, time, and others. The Fermat’s
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Fig. 1. Region V enclosed by closed surface .Scontaining the electro-

magnetic fields, charge, and current. n is a unit veetor normal to S
and outwardly directed.

principle in optics and the Thomson’s theorem in the

electrostatic fields are the typical examples. In dynamics,

the system satisfies the Lagrange equation when the action,

that is, the integration of Lagrange function with respect

to time, is stationary. It follows that the principle of least

action in dynamics states that “the motion of a matter

passes through the path for which the action has the sta-

tionary value.”

In electromagnetism, the action J is expressed in terms of

Lagrange function Las follows [5]:

J

tl
J= L dt (1)

to

where

P

L=
J

(l{E(r,t) . W,t) – H(r,t) oB(r,t)}
v

+ A(r,t).J(r,t)

B(r,t)= V x A(r,t)

– p(r,t)@(r,t)) dv (2)

i?A(r,t)
E(r;t) = – — – Vrj(r,t).

(?t
(3)

In the foregoing equation, r and tare the vector distance

from the origin and the time, E and E are the electric and
the magnetic field intensities, D and B are the electriG and

the magnetic flux densities, A and ~ are the vector and the

scalar potentials, and J and p are the electric current density

and the electric charge density, respectively. Then, the

principle of least action for the electromagnetic fields can

be stated as follows: “Provided that the correct values of

A and @ are given in the region V at the initial time to and

the final time tland on the closed surface S enclosing V

during the time interval [to,tl],then A and ~ in V for which

J becomes stationary can be determined, and those A and

# thus determined give the true fields throughout the region

V” (Fig. 1). The true values of E and B are then yielded

from (3) using these A and #, and further, the true expres-
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sions for D and H can be obtained with the aid of the

constitutive relations.

Let us consider next another expression of the principle

of least action for the electromagnetic fields in tlhe frequency

region. Extending the time interval [tO,tl] to (- m,co), the

time domain problem of the electromagnetic fields can be

transformed into the frequency domain problem by means

of Fourier transformation. Thus the integration with

respect to the time t in (1) becomes the integration with

respect to the frequency f as follows:

JJ
J= m df (+{E(r,@) s D(r,a))* – H(r,o) . B(r,co)*}

-w v

+ A(r,co)” J(r,o)* -- p(r,co)~(r,co)’) dv (4)

where * stands for the complex conjugate, A(r,co) and

q5(r,co) are the Fourier transforms of A(r,t) and #(r,t),

respectively, and OJis an angular frequency. The frequency

domain expressions of (3) are

B(r,co) = V“ x A(r,o)

E(r,o) = –jwl(r,co) – V@(r,co). (5)

Let us assume that the materials involved are linear and

dissipationless, for simplicity, but are inhomogeneous and

anisotropic, in general. The constitutive relations can then

be expressed in the form

D(r,co) = ~(r,co)l?(r,m)

B(r,co) = /2(r,co)H(r,co). (6)

Since the materials involved are assumed to be lcms free, both

the tensor permittivjty 8 and the tensor permeability ,0 are

Hermitian.

Since E(r,t), H(r,t), D(r,t), B(r,t’), J(r,t), and p(r,t) are

real quantities, both A(r,t) and q5(r,t) are also the real

functions. Therefore, the Fourier transformations of these

real functions, E(r,co), H(r,o), D(r,co), B(r,co), A(r,co),

q5(r,co), J(r,o), and p(r,co), possess the following properties:

E(r,co) = E(r, -- co)*

H(r,o) = H(F, -- CD)* (7)

etc. Substituting the relations given by (6) and (7) into (4),

we obtain

J = [~ df [ (E(r,co)* “ g(r,co)E(r,o) – iY(r,co)*
JO Jv

“ @(r,fn)H(r,o)

+ i4(r,co)* “ J(r,co) + A(r,co) . J(r,o)*

– p(r,co)@(r,co)* – p(r,co)*@(r,a)) du.

The first-order variation of the action Y due to

variation in @ is given as

JJ
bJ@ = ~ df Sq5*(V “ i2E – p) dV

o v
Pal P

(8)

the small

— JJdf &j*8E . n ds + C.C. (9)
o Sa

Fig. 2. Volume P’enclosed by closed surface S. S~ indicates the surface
across which i and ji change discontinuously. r+ and r- designate
the vector distances indicating outer and inner sides of discontinuous
boundary &.

where the term designated as C.C. represents the complex

conjugate of the first two terms on the right-hand side of

the preceding equation. The surface integral must be carried

out over both sides of the surface S~ acro:ss which the

material constants ~ and ~ change discontinuously. n is a

unit vector normal to the boundary surface anld directed as

shown in Fig. 2.

In order that the action J be stationary for a variation in

~, the following equation

V. 8(r,o)E(r,co) = p(r,co) (lo)

must be satisfied in the region where.$ and P are continuous,

and at the same time, the following condition

n” {g(r ‘,co)E(r ‘,co) – ~(r-,o)E(r ‘,oJ)} = O (11)

must also be satisfied on both sides of discontinuity surface

S~, In the foregoing equation, r + and r- are the vector

distance indicating outer and inner sides of the discon-
tinuity surface S~ as shown in Fig. 2.

Similarly, the first-order variation of the alction J with

respect to A is given by

H

~JA = m df 6A*”(jco8E -Vx H+ J)dv
o v

+
H

m df (H X 6A*) “ n ds + C.C. (12)
o sd

The notations in the preceding equation are the same as

those used in (9). To make 6J~ zero for a variation in A,

we get

V x H(r,co] = jco~(r,co)E(r,m) + J(r,co) (13)

in the region where 8 and P are continuous, and also

n x {H(r ‘,co) – H(r-,co)} = 01 (14)

on both sides of discontinuity surface S@ By choosing the

trial functions for A and ~ in such a way that n x A,

n x V~, and ~ are continuous across the discontinuity

surface S~, the following relation

n x {E(r ‘,co) – E(r ‘,co)} = O (15)

is satisfied on both sides of Sd. Therefore, if A and @ are

determined in such a manner that for those A and ~ the

action J becomes stationary and also n x A, n x V~, and

@ are continuous across Sd, (5), (10), and (13), i.e., the

Maxwell’s equations, are satisfied in the region where 8 and

~ are continuous, and ‘at the same time, (14) and (15), i.e.,
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the boundary conditions, are also satisfied on the discon-

tinuity surface S~.

We” can conclude, therefore, that the physically realizable

electromagnetic fields E and H, both satisfying the Maxwell’s

equations and the necessary boundary conditions, can be

derived uniquely from the least action principle. It should

be noted that the additional relation, that is, the so-called

gauge condition, ii required to determine the vector and

scalar potentials A and ~ uniquely.

III. VARIATIONAL EXPRESSIONSFOR RESONANT FREQUENCY

In this section, we shall derive the variational expressions

for the resonant frequency of the cavity resonator using the

results obtained in the preceding section.

We will assume that the cavity resonator is formpd by a

perfect conducting, wall, and the materials involved in the

resonator are inhornogeneous and anisotropic, in general.

But the materials involved are assumed to be linear, non-

dispersive, arid dissipation free, for simplicity. AS a gauge

condition, let # be specified, for later convenience, as

+(Y,W) = 0, (16)

Under this condition, the relation between A and E given

by (5) is reduced to

E(r,co) = –jcd(r,o)). (17)

We take for V in (8) the charge and current free region

within the cavity resonator. Making use of (17), together

with the aforementioned assumptions, reduces (8) to

‘= J:d~Jv@(’@)*”’(’)E(’,o)
)–-+{V X E(F,o)]* - /2- ‘(r){V X E(r,co)} du.

(18)

Thus the stationary problem being expressed in terms of A

was transformed to the staticmary problem expressed in

terms of E.

Since the electric field in a cavity resonator can be expres-

sed by a linear combination of the electric fields of the

individual resonant modes, E(r,co) can be written in the

form

E(r,cp) = ~ 6(CV – CDi)Et(r) (19)
&

where Ei(r) and cot are the electric field and the resonant

frequency of the ith mode, respectively, and 6(o – @i)

signifies the delta function. Substituting (19) into (18), and

carrying out the integration with respect to the frequency j

we get

J = ~ Lid(0) (20)
i

where

Li =
J(

Ei(r)* “ B(r)l?i(r)
v

)
– ~ {Y ~ Ei(r)}’ . ,ll-l(;){V X Ei(r)] @. (21)

@iz

The amplitude of Et(r) is determined by the electric field

distributions at t = – co.If we assume that there exists

only ith mode alone at t = – co,(20) becomes

J = Lid(0). [22)

Therefore, the stationary problem for J is reduced to that

for Li. Hence we can determine the correct values of the

electric field E(r) and the resonant frequency o in such a

manner that for those l?(r) and CO,

L=
J(

E(r)” “ 8(r)E(r)
v

)
– $ {V X E(r)}” o~- ‘(r){V X E(r)} a% (23)

becomes stationary. The subscript i will be omitted, for

simplicity, hereafter. ‘

The first integral on the right-hand side of (21) gives the

electric energy, while the second represents the magnetic

energy, both stored in the cavity resonator. Since the stored

electric and the magnetic energies in the resonator are equal

at the resonant frequency, L given by (23) must be zero

for the correct value of the resonant frequency. w, which

in turn leads to the expression [3]

In other words, the stationary problem for L given by (23)

is equivalent to the stationary problem for coz given by (24).

We can conclude, therefore, that (24) represents the varia-

tional expression for the resonant frequency of the cavity

resonator. The variational expression given ‘by (24) coincides

with that obtained previously by Berk [2].

The foregoing variational expression is expressed in

terms of the electric field alone. Alternative to the preceding

formulation, we may, derive a similar expression which

contains both electric and magnetic fields. By steps similar

to those leading to (23) from (8), we get

J,
L = ({.jcoA(r)}* “ W){j@A(r)}

v

– {V X A(r)}”. @-’(i’){V X A(r)})@ (25)

where

H(r) = j-l(r)V X ~(r)

E(r) = –jcw’l(r). (26)

Substituting the vector identity

(V XA)*O@-’(V XA)=A*. VX/2-’VX A

– V . {(~-lV X A) X A*} (27)

into (25) and applying Gauss’ theorem, and further, in

view of (26), we get the expression for L in the form

n/

)–E(r)” “ V X H(r)} dv

E(Y)*} “ n ds (28)
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Fig. 3. Transmission line containing inhomogeneous and anisotropic
materials. Direction of wave propagation is in z axis along which
the line is uniform.

TABLE I
SYMMETRICALTRANSFORMATIONSBETWEENELECTRCJMAGNETIC

QUANTITIES

~—

~—

where S indicates the surface of a perfect conducting wall

enclosing a cavity resonator while S~ is the surface across

which $ and D change discontinuously. Using the same

procedure as that used to obtain (24), we found that

,-----
n ,~ ‘~,c
y ~ ‘\,

6
cd \+“ +1’ f? N\

\\ I\\ ([ ~) /’\\ \\...+!’ ,/---‘% /’------

Fig. 4. Contours used in the evaluation of integration.

Fourier

L=

transformation, we get

+J.’’ u’.({om(x,y,~)* “ -qx,yy?(x, y,p)

+ COLT(X,y,fl)* “ /l(x, y)lqx, y,p)

– jli(x, y,p)” “ v, x E(x, y,p)

+ m% Y>P)* “v, x H(X> J@)}”
+B{H(x, YJ3)* “ i, x E(A Y,B)

– E(x, y,~)* . i= x IJ(x, y,~)}) ds

–j
J 1

{H(x, y,p) x E(x, y,/3)*) “ n dl . (31)
c+cd

This is another variational expression for the resonant In the foregoing equation, C represents a closed contour in

frequency of the cavity resonator which involves both the transverse plane as shown in Fig. 4. For the open-type

electric and magnetic fields. It can be shown that the trial transmission lines, C must be a closed contour enclosing the

function for E in (29) must satisfy the conditions such that transmission line at infinity, while in the case c~f the metallic

n x 13E = O on the conductor surface S and also n x bE waveguide, C is a cross-sectional boundary of the guide

is continuous across the discontinuity boundary Sd, where wall. Cd indicates the line in the transverse plane across which

d signifies a small variation in E. 8 and /2 change discontinuously. E(x,y,~) and ll(x,y,~)

Making use of the symmetry of the MaxwelPs equations are the Fourier transforms of E(r) and H(r),, respectively,

shown in Table I, the variational expression (29) can be and Vt = iX(8/dx) + iY(d/dy) where ix and iy are the unit

rewritten in slightly different form vectors directed in x and jJ directions, respectively.

~ = ~ fJJ {~@)* - V x E(J’) - E(”)”” v x ~(’)} d“ - ~ fs+s. {~(~) x ~(r)”}” n ds
fv {E(r)” “ t(r)E(r) + H(r)” “ .ti(r)H(r)} do

(30)

which coincides with that obtainecl by Berk [2]. The trial

function for H in (30) must satisfy the condition that

n x dH is continuous across the discontinuity boundary Sd.

IV. VARIATIONAL EXPRESSIONSFOR

PROPAGATION CONSTANT

Let us derive next the variational expressions for the

propagation constant of the guided waves traveling along a

uniform transmission line. It is assumed that the materials

involved are inhomogeneous and anisotropic, in general,

but are linear, nondispersive, and dissipation free. Fig. 3

illustrates the transmission line under consideration which
is uniform in a direction of wave propagation z.

To derive the variational expressions for the propagation

constant, divide the volume integral in (28) into the surface

integral over the transverse (xy) plane S and the integral

along the propagation axis z. Further, transforming the

integration with respect to z into the integration with

respect to the propagation constant /? by performing the

The electromagnetic fields of the wave propagation in the

z direction can be expressed in terms of the lin~ear combina-

tions of the electromagnetic fields of each propagation

mode. Hence

(32)

where E~(x, y) and Hi(x, y) represent the electric and the
magnetic fields of the ith mode, respectively, and j?i is its

propagation constant. Substituting (32) into (31), and

carrying out the integration with respect to fl, we get

(33)
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where

“
Mi = I ({(lmi(x,y)” “ @,y)E,(x,y)

JS

+

x

—

@H~(X,~)*“ ~(X,~)Hi(X,~)

Ei(x,y) + jEi(x,y)* “v, x

— jHi(X, ~)* “ V~

‘i(x,.Y)} – Bi{Hi(x,Y)*

i= x Zi(X,~) – ~i(x,~)* o iz x Hi(x,~)}) ds

j [ {Hi(x~) x Ei(~,~)*l ~ndl. (34)
Jc+cd

The amplitude of the ith mode is determined by the electro-

magnetic fields at t = – co.If we assume that there exists

only the ith mode alone at t = – m, the stationary prob-

lem for L is reduced to that for A4i, and hence we can

determine the correct values of Ei, Hi, and fli in such a way

as Mi becomes stationary for those correct values. We shall

neglect the subscript i for brevity hereafter. According to

the similar reasoning used in the preceding section, M

given by (34) must be zero for the cc~rrect values of E, H,

and /3 (see Appendix). Therefore, the stationary problem

for M is equivalent to the stationary problem for the

propagation constant P given by

cedure used to yield (31) from (28), we get from (21)

– -j {V X E(X,y,fl)* “ @- ‘(x,y)v X E(x> y,fl)}) ds.

(38)

Dividing the electric field E into the transverse component

et and the z component izez, and applying Gauss’ law (10)

with p = O, we obtain

E(x,y,j?) = et(x,y,~) + izez(x,y,/3) (39)

8- lizVt o8e,(x,y,/?)
ez(x,y,j?) = – ‘z “ (40)

.iP “

For the correct value of e, the following equation, which is

derived from the Maxwell’s equations, must be satisfied:

– i= x { – ~ze,(x, y,p) + Vtiz o(8- ‘iZVt . te,(x,y,/?))}

= mzjl{iz x ~et(x,y,~)} – /l{i= X Vt x /l-lVt x et(w,fl)}.

(41)

fS(oE(x,J’)* -t(x,Y)E(xJJ) + ~.~(xd’)” “ d(x,Y)H(x,Y)

– jH(x,y)* oVt x E(x, y) + jE(x,.y)* “ Vt x H(x,y)) ds – j fC+Cd {H(x,Y) x ~(x,Y)*} - n dz (35)p=

fs (H(x,Y)*” i x E(x,Y) - E(x,y)”” i= x H(x,y)) ds

The conditions to the trial function for E in (35) are n x c?E = O on C and n x tiE changes continuously across Cd,

where d signifies a small variation in E. In view of the transformation given by Table I, (35) can be rewritten in

the form

fs (oJE(x,Y)* “ ~(x,Y)E(xJ) + COH(X,Y)* “ /.@JJ)H(xJ)

p=
– .jH(x,y)* oV, x E(x,y) + @(x,y)* oVt x H(x,Y)) ds + j fC+Cd {E(x,.JI) x H(x,.Y)*} “ n d~ (36)

fs (H(x,Y)* “ i. x E(x,y) - E(x,Y)* oi. x H(x,y)) ds

which coincides with that derived by Berk [2]. 1 The trial

function for H in (36) must satisfy the conditions n x

tiH = O on C and n x 13H changes continuously across Cd.

Provided that t and @are in the form

the variational expression for the propagation constant can
be expressed in terms of only the transverse component of

the electric field alone, or only the transverse component

of the magnetic field alone. According to the same pro-

Substituting (39)–(41) into (38), we get

- (V, x e,(x, y,/?)*) “ ji- ‘(V, x e,(x, y,fl))]

--$ [{i= x (02@et(x, y,(l)”

– V, x @-‘*V, x e,(x, yjfl)”)}

. fl{iz x (co2tet(x, Y,P)

– V, x jl- lV, x e,(x, y,~)))

— co2(izVt” 8*et(x, y, fl)*)

1 Note that the last term’s sign in the numerator of (14) in Berk’s
)

. 8- l(iZV, “ ~e,(x, y,/3))] ds.
paper [2] is in error.

(42)
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In the same way as that used to derive (35), we obtain from Then the conditions to the trial function fore, clerived from

(42) the variational expression for 13which is expressed in the first variation of (45) become in simpler form as follows: 1)

terms of the transverse electric field component et as n x de, and i, ..2- l(izVt” Met) must vanish on C; 2) n x de,

follows : and i=”.2 – 1(izVt” MeJ must change continuously across CJ.

f, ({i. x (@’s*e,* -V, x P-’*V, x et*)}. t{iz x (O’eet - V, x P-’V, x 4}

P2=-
– 02(izVt o8*et*) ‘ ~- l(izVr o8eJ) ds

f~ ((V, x et*) ~~-l(V, x et) - 02et* . eet) ds
—. (43)

In the preceding equation, et = et(x,y), 8 = I?(x,Y), and The variational expression for the propagation constant

@ = 12(x,y) are the functions of x and y (independent of z). expressed in terms of transverse magnetic field component

In particular, if ‘materials involved are isotropic, 8 and o in h, can easily be obtained from (45) with the aid of the

(43) become scalar constants, and (43) reduces to Kuro- transformation given by Table I. The result is

j. ({i= x (fn’L*ht -V, x t-’*V, x lft)} . ~{iz x (m2@t - V, x $-’V, x L)}
— ‘- l*V, x /i,* – 02@*ht*){iz ‘ Q- l(izVt ojlh,l)}co2(i=Vt - jl*ht*) oji– l(izVt s@J) A — Jc+cd ((Vt X 8

/3’=- + (V, x 8- lV, x h, – a’~lzt){iz “ ~- l*(izVt “ @*/z,*)}) ~1. (46)

f~ ((V, X /It*) og- l(V, X h,) - co2kt* $/!!/zt) ds - fc+c~ (h, X 8‘-’*(V, x Iz,*) + /i,* x .6-1(V, x lit)) ~n“dl

kawa’s variational expression [6] for the waveguide consists

of perfectly conducting walls.

The first variation of (43) is given by

J
tip’ {(V, x e,”) “ /i- l(V, x e,) – m2et* “ Se,} ds

s

.—
f

({i= x (V, X p‘- 1*V, x &?,* – am*&?t*)}

. ~iz x (/?2et – Vtiz “ 8–l(izVt o8et)) – /l(i= X

– V, x 12-lV, x e,))}) ds

-P’J {e, x ,il- l*(V, x de,*)} on dl
C+cd

-J
((V, x /2-’” V, x $e,’:’ – co2.Ydel,*)

c+cd

“ {i= “ t- l(izV, . te,)}) . n dl + C.C.

(co’~e,

(44)

where C is a closed conductor in the transverse plane as in

the case of (3 1), while Cd indicates the line in the transverse

plane across which 6, 0, and their first derivatives change

discontinuously. The term designated as C.C. represents the

complex conjugate of the terms before it. The ccmrect value

of ef in (44) must satisfy the equation given by (41), and

also both n x et and i= “ 2– l(izVt “ 8eJ must be continuous

across cd. Therefore, the conditions to the trial function

for et in (43) can be stated as follows: 1) n x /l- lVt x ~et

and n ~(V, x /1- lV, x fie, – co2Me,) must vanish on C;

2) n x fl-lVz x tie, and n “ (V, x /l-lV, x de, – co2&5e,)

must change continuously across CJ. In order to simplify

the conditions to the trial function for e,, let us add the

term of line integral to both the denominator and the

numerator in (43) as follows:

The conditions to the trial function for h, in (46) can be

found from the first variation of (46). Those conditions are

as follows: 1) n x NZt and i= “ j.l - l(izVt o~WZJ must vanish

on C; 2) n x Ntt and i= . ~- l(izVt. ,ikMJ must change con-

tinuously across CJ.

V. VARIATIONAL EXPRESSION FOR IMPEDANCE MATRIX

Let us derive in this section the variationall expression

for the impedance matrix of waveguide junctions from the

least action principle. The n-port waveguide junction under

consideration is shown schematically in Fig. 5. Suppose

that the materials involved in the junction are linear, non-

dispersive, and dissipation free. In Fig. 5, S’i (i := 1,2,00. ,n)

are the reference planes chosen in the connected waveguides

far enough from the junction so that all the higher modes

above cutoff are extinguished. Let the electric and magnetic

fields within the junction be Ei and Hi, respectively, when all

ports except the ith port are open circuited and a unit

current is fed into the ith port. Similarly, Ej and Hj may be

regarded as the electric and magnetic fields within the

junction caused by an input unit current at port j when all

ports except the jth port are open circuited.

Because of the linearity of the system under consideration,

the electromagnetic fields within the junction corresponding

to the unit input currents at ports i andj can then be expres-

sed as

E= Ei+Ej

H= Hi+Hj. (47)

We take for V in (8) the charge and current free region

within the junction, and assume that the junction is operated

fS ({i= x (m2.?*et* -v, x @-l*V, x et*)}. @{iz x (m’Se -V, x ji-lVt x et)}
:- l*vt x et* – 028*et*){iz ot- l(izVt “ ~et)}— m’(izvt . .8*et*) “ 8– l(izVt “ 2eJ) ds – ~c+c. ((Vt x u

/32=- + (Vt x .i2-lVt x et – co’ee,){i, * 6- l*(i~vt o~*et*)}) ‘In dz
—. (45)

f, ((V, x e,*) “ II-l(V, x e,) - co2e,* ~te,) ds - fc+c~ (et x 12-l”(V, x e,”) + e,” x P-l(V, x e,)) ~n dl
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Fig. 5. Schematic diagram of n-port waveguide junction.

with single angular frequency CU.Then (8) becomes as

J
J = 6(0) (E(Y)* . .?(r)E(Y) – H(r)* “ /.l(r)H(r)) dv

v

(48)

where Zij is a component of an impedance matrix given by

J
Zij = jco (Hi* “ /2Hj – Ei” “ 8Ej) dv. @9)

v

Since both E and H in the foregoing equation are the func-

tions of A and ~, we can rewrite (49), with the aid of (5)

and (16), in the form

Zij = jo HHi* . @j
v

)– > (V x Hi*). 8-1(V X Hj) dv. (50)

Thus the stationary problem for J given by (48) has been

reduced to the stationary problem for Zij given by (50)

expressed in terms of H.

The first-order variation of Zij is given by

8Zij =
J

{dHi* “ (V X Ej + jco@Hj)
v

+ 6Hj “ (–V X Ei* + jcafl*Hi*)} do

+
J

{dHi* X Ej – dHj X Ei*} ~n ds (51)
s’-!-sd+s.

where S’ is a conductor wall forming a junction, S~ is a
surface across which 8 and P change discontinuously, and

S, are the reference planes in the connected waveguides, as

shown in Fig. 5. The conditions to the trial function for H

in (50) can then be found from (51) as follows: 1) n x

dH = O on S,; 2) n x 6H changes continuously across S~.

VI. CONCLUSION

A novel approach to derive the variational expressions for

electromagnetic field problems has been proposed. It has
been shown that the variational expressions for a resonant

frequency of a caviiy resonator, a propagation constant of a

uniform transmission line, and an impedance matrix of a

waveguide junction can be derived systematically all from

s.
r .- ————

1
I I

s, \ ‘ %

-
I

I I
L–_____I

Fig. 6. Surface S(.S, + S, + Sm) used in evaluation of integration
in (A3). So is a cylindrical side surface with infinite radius, and S1
and S2 are parallel surfaces transverse to the propagation direction
of the transmission line.

the least action principle. We have shown that the Maxwell’s

equations themselves can also be yielded by solving the

stationary problem of the action J.

Though we have assumed the materials contained in the

system under consideration are linear and loss free, the

variational expressions derived in the present paper are

applicable to the system which involves anisotropic and/or

inhomogeneous materials.

APPENDIX

For the charge and the current free region ~, (8) is

reduced to

MJ= m df (E(r,a.))* “ 2(r,co)E(r,co)
o v

– H(r,co)’ o/i(r,a)H(r,co)) dv. (Al)

Provided that E and H are the correct fields satisfying the

Maxwell’s equations for the loss-free region, the following

equation

V . (E X H*) = ,jco(E* . 2E – H* . /2H) (A2)

is derived. Substituting (A2) into (Al) and applying Gauss’

theorem, reduce (Al) to

J= [mdf[(~Ex H*). rids. (A3)
JO - .ls fjco /

As shown in Fig. 6, the surface S consists of S1, Sz, and Sm.

J given by (A3) vanishes for a propagation mode because

(E x H*) . n is zero on S’m and also the unit normal vector5

n on S1 and S2 direct to opposite directions. Therefore, the

action J, and hence L, becomes zero for a propagation
mode. We can conclude, therefore, that M must be zero

for a correct propagation mode.
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