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Unified Approach to the Derivation of
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Abstract—A unified procedure to derive the variational expressions for
electromagrietic field problems is presented. It is shown that the vari-
ational expressions for a variety of electromagnetic parameters such
as, for instance, a resonant frequency, a propagation constant, and an
impedance matrix, can be formulated systematically all from *the
principle of least action” point of view. It is pointed out that the Maxwell’s
equations themselves can also be derived from the least action principle.

I. INTRODUCTION

HE variational method is one of the very powerful

techniques capable of treating a large variety of electro-
magnetic fields problems. So far, however, the appropriate
variational expressions have been derived for each specific
problem by a trial-and-error approach which is attended
with laborious and time-consuming difficulties.

To avoid such a tricky approach, the procedures which
are systematic to some extent have been proposed previously
by several authors. Rumsey [1], Berk [2], and Harrington
[3] have described the method to derive the variational
expressions by using the “reaction concept,” while Cairo
and Kahan [4] have shown that the variational expressions
can be obtained by means of “transpose operator and
field.” However, the method of “reaction concept” lacks
uniformity in the strict sense because the definitions of
reaction are different for the three-dimensional problems
and the two-dimensional problems. In Cairo and Kahan’s
method, the physical meaning of the “transpose field” is
hard to understand and also the technical skills are still
required.

In the present paper, a unified procedure to derive the
variational expressions for the electromagnetic field prob-
lems is given from “the principle of least action” point of
view. We shall show first that the Maxwell’s equations
themselves can be yielded from the principle of least action,
and then derive the variational expressions for a resonant
frequency, a propagation constant, and an impedance
matrix, systematically, all from the least action principle.

II. A REVIEW OF THE PRINCIPLE OF LEAST ACTION

It is well known that a general feature of the classical
physical phenomenon can be explained by the principle
of least action, or, in other words, the stationarity of the
actions which are suitably defined fundamental physical
quantities such as energy, time, and others. The Fermat’s
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Fig. 1. Region V enclosed by closed surface S containing the electro-
magnetic fields, charge, and cuirent. » is a unit vector normal to §
and outwardly directed.

principle in optics and the Thomson’s theorem in the
electrostatic fields are the typical examples. In dynamics,
the system satisfies the Lagrange equation when the action,
that is, the integration of Lagrange function with respect
to time, is stationary. It follows that the principle of least
action in dynamics states that “the motion of a matter
passes through the path for which the action has the sta-
tionary value.”

In electromagnetism, the action J is expressed in terms of
Lagrange function L as follows [5]:
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J=f L dt
t

o

(1

where
L = f (3{E(r,t) - D(r,t) — H(r,t) - B(r,t)}
14

+ A(r,t) - J(r,t) — p(r,t)p(rt)) dv (2)
B(rt) = V x A(r,t)

E(®r) = — "f-‘-’-gﬁ’_) — V(D). 3)

In the foregoing equation, r and ¢ are the vector distance
from the origin and the time, E and H are the electric and
the magnetic field intensities, D and B are the clectric and
the magnetic flux densities, 4 and ¢ are the vector and the
scalar potentials, and J and p are the electric current density
and the electric charge density, respectively. Then, the
principle of least action for the electromagnetic fields can
be stated as follows: “Provided that the correct values of
A and ¢ are given in the region ¥ at the initial time 7, and
the final time ¢, and on the closed surface S enclosing V
during the time interval [#,,#,], then 4 and ¢ in V for which
J becomes stationary can be determined, and those 4 and
¢ thus determined give the true fields throughout the region
V' (Fig. 1). The true values of E and B are then yielded
from (3) using these 4 and ¢, and further, the true expres-
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sions for D and H can be obtained with the aid of the
constitutive relations.

Let us consider next another expression of the principle
of least action for the electromagnetic fields in the frequency
region. Extending the time interval [#,,¢,] to (-~ c0,00), the
time domain problem of the electromagnetic fields can be
transformed into the frequency domain problem by means

of Fourier transformation. Thus the integration with -

respect to the time 7 in (1) becomes the integration with
respect to the frequency f as follows:

J = J.w de‘ G{E(r,0) - D(r,0)* — H(r,w) - B(r,0)*}
- — 14

+ A(r,0) - J(r,w)* — p(ro)p(r,w)*) dv (4)

where * stands for the complex conjugate, A(r,») and
¢(r,0) are the Fourier transforms of A(r,t) and ¢(r,),
respectively, and w is an angular frequency. The frequency
domain expressions of (3) are

B(r,w) = % A(r,w)
E(r,w) = —jod(r,0) — Vo(r,w). &)

Let us assume that the materials involved are linear and
dissipationless, for simplicity, but are inhomogeneous and
anisotropic, in general. The constitutive relations can then
be expressed in the form

D(r,0) = &(r,w)E(r,w)

B(r,.w) = j(r,0)H(r,w). (6)
Since the materials involved are assumed to be loss free, both
the tensor permittivity & and the tensor permeability 4 are
Hermitian.

Since E(r,t), H(r,t), D(r,t), B(r,t), J(r,t), and p(r,t) are
real quantities, both A(r,t) and ¢(r,z) are also the real
functions. Therefore, the Fourier transformations of these
real functions, E(r,w), H(r,w), D(rw), B(r,w), A(r,w),
o(r,0), J(r,w), and p(r,w), possess the following properties:

E(r,0) = E(r,—0)*

H(F,CO) = H(V, '-(1))* (7)
etc. Substituting the relations given by (6) and (7) into (4),
we obtain

J = fw af f (E(r,w)* - &(r,0)E(r,0) — H(r,w)*
0 %

© fi(r,w)H(r,w)
+ A(r,w)* - J(r,o) + A(r,0) - J(r,0)*
= p(ro)p(rw)* — p(rw)*(r.w)) dv. (3

The first-order variation of the action J due to the small
variation in ¢ is given as

5J¢=f°°dff S6*(V - 8E — p) dv
0 14

_ fw af f 5¢*2E-nds + cc. (9)
0 Sa

Fig. 2. Volume Venclosed by closed surface S. .S, indicates the surface
across which & and 4 change discontinuously. »* and r~ designate
the vector distances indicating outer and inner sides of discontinuous
boundary S,. :

where the term designated as c.c. represents the complex
conjugate of the first two terms on the right-hand side of
the preceding equation. The surface integral must be carried
out over both sides of the surface S; across which the
material constants ¢ and fi change discontinuously. » is a
unit vector normal to the boundary surface and directed as
shown in Fig. 2.

In order that the action J be stationary for a variation in
¢, the following equation

V - 4r,0)E(r,0) = p(r,w) (10)

must be satisfied in the region where £ and /1 are continuous,
and at the same time, the following condition

n- {8t 0Erto0) — 8r ,wEFr 0} =0 (11

must also be satisfied on both sides of discontinuity surface
S,. In the foregoing equation, r* and r~ are the vector
distance indicating outer and inner sides of the discon-
tinuity surface S; as shown in Fig. 2.

Similarly, the first-order variation of the action J with
respect to A is given by

5JA=f dff SA* - GwtE — V x H + J) dv
0 14

N *)- .c. (12
+fo ded(HxéA) nds + cc. (12)

The notations in the preceding equation are the same as
those used in (9). To make 8J, zero for a variation in 4,
we get

V x H(r,w) = jobr,o)E(r,w) + J(r.w) (13)
in the region where & and 4 are continuous, and also
nx {Hr*,0) — Hr ,0)} =0 (14)

on both sides of discontinuity surface S;. By choosing the
trial functions for 4 and ¢ in such a way that n x 4,
n x V¢, and ¢ are continuous across the discontinuity
surface S, the following relation

nx {Ert,0) — E(r )} =0 (15)

is satisfied on both sides of S,. Therefore, if 4 and ¢ are
determined in such a manner that for those 4 and ¢ the
action J becomes stationary and also n x 4, n x V¢, and
¢ are continuous across S;, (5), (10), and (13), i.e., the
Mazxwell’s equations, are satisfied in the region where & and
/i are continuous, and ‘at the same time, (14) and (15), i.e.,
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the boundary conditions, are also satisfied on the discon-
tinuity surface .S;. ‘

We can conclude, therefore, that the physically realizable
electromagnetic fields E and H, both satisfying the Maxwell’s
equations and the necessary boundary conditions, can be
derived uniquely from the least action principle. It should
be noted that the additional relation, that is, the so-called
gauge condition, is required to determine the vector and
scalar potentials 4 and ¢ uniquely.

III. VARIATIONAL EXPRESSIONS FOR RESONANT FREQUENCY

In this section, we shall derive the variational expressions
for the resonant frequency of the cavity resonator using the
results obtained in the preceding section.

We will assume that the cavity resonator is formed by a
perfect conducting wall, and the materials involved in the
resonator are inhomogeneous and anisotropic, in general.
But the materials involved are assumed to be linear, non-
" dispersive, and dissipation free, for simplicity. As a gauge
condition, let ¢ be spe01ﬁed for later convenience, as

$(rw) = 0. (16)

Under this condition, the relation between 4 and E given
by (5) is reduced to

E(r,w) = W)

We take for V in (8) the charge and current free region
within the cavity resonator. Making use of (17), together
with the aforementioned assumptions, reduces (8) to

J = f: af fv (E(r,w)* - H(r)E(r,0)

— joA(r,).

- a% {V x E(ro)}* - 4~ '(r){V x E(r,co)}) du

(18)

Thus the stationary problem being expressed in terms of A
was transformed to the stationary problem expressed in
terms of E.

Since the electric field in a cavity resonator can be expres-
sed by a linear combination of the electric fields of the
individual resonant modes, E(r,w) can be written in the
form

E(r ®) =

Z 5(a) - w,)E (r) (19)

where E(r) and w; are the electric field and the resonant
frequency of the ith mode, respectively, and é(w — w;)
signifies the delta function. Substituting (19) into (18), and
carrying out the mtegratlon with respect to the frequency f,
we get
J =Y, L:(0) (20)
i
where

L= f (B0 - sEw

—'—1—2 {V x E(r)}* - p71 @)V x Ei(r)}) dv. (21)
«w

i

The amplitude of E,(r) is determined by the electric field
distributions at ¢+ = —oo. If we assume that there exists
only ith mode alone at ¢ = — co, (20) becomes

J = L:5(0). (22)

Therefore, the stationary problem for J is reduced to that
for L Hence we can determine the correct values of the
electric field E(r) and the resonant frequency w in such a
manner that for those E(r) and o, v

L = J; (E(r)* . é(r)E(r)

- —a% {V x E@)}* - a~1){V x E(r)}) dv (23)
becomes stationary. The subscript i will be omitted, for
simplicity, hereafter.

The first mtegral on the right-hand side of (21) gives the
electric energy, while the second represents the magnetic
energy, both sf;ored in the cavity resonator. Since the stored
electric and the magnetic energies in the resonator are équal
at the resonant frequency, L given by (23) must be zero
for the correct value of the resonant frequency. @, which
in turn leads to the expression [3]

_ [ (Y x E@}* - g7 10V x E(r)}) dv
‘ fv (E@)* -2)E(r)) dv

In other words, the stationary problem for L given by (23)
is equivalent to the stationary problem for w? given by (24).
We can conclude, therefore, that (24) represenis the varia-
tional expression for the resonant frequency of the cavity
resonator. The variational expression given by (24) coincides
with that obtained previously by Berk [2].

The foregoing variational expression is expressed in
terms of the electric field alone. Alternative to the preceding
formulation, we may derive a similar expression which
contains both electric and magnetic fields. By steps similar
to those leading to (23) from (8), we get

N f ({joA@)}* - 20r){joA(r)}
—{V x A4

24

L)V x A dv (25)
where
H() = 4@V x 4@

E(r) = —jwA(r).
Substituting the vector identity
(VX A f"IV x A) = A*-V x p"V x 4
— V- {a"V x 4) x 4*} (27)

into (25) and applying Gauss’ theorem, and further, in
view of (26), we get the expression for L in the form

(26)

L= f (E(r)*-é(r)E<r) + HeY* - ) H()
vV

_ 1 {H(r)*-V x E() — E(r)*-V x H(r)}) dv
) ' J

_J f (H(F) x EF)*}-nds 28)
S+Sa

w
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(

Fig. 3. Transmission line containing inhomogeneous and anisotropic
materials. Direction of wave propagation is in z axis along which
the line is uniform.
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TABLE 1
SYMMETRICAL TRANSFORMATIONS BETWEEN ELECTROMAGNETIC
QUANTITIES
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>
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where S indicates the surface of a perfect conducting wall
enclosing a cavity resonator while S, is the surface across
which ¢ and fi change discontinuously. Using the same
procedure as that used to obtain (24), we found that

_Jy {Hr)* -V x E(r) = EG)* -V x H(r)} dv + j [s45, (H(r) x E(r)*} - ‘nds

Fig. 4. Contours used in the evaluation of integration.

Fourier transformation, we get
L= 7 ap| [ CoBGrp* BB

2nw J_ s
+ wH(x,y,8)* - i(x, y)H(x,y,p)

= JH& B Ve x E(y.B)
+ JE(x,,B)* -V, x H(x,y,p)}
+ B{H(x,y.B)* - i, x E(x,,p)
— E(x,y,p)* i, x H(x,y,p)}) ds

- .]f {H(X,%ﬂ) X E(x1yaﬁ)*} ‘n dl:l . (31)
C+Cy

fv {E@)* - &E(r) + H(r)* - A(r)H(r)} dv

This is another variational expression for the resonant
frequency of the cavity resonator which involves both
electric and magnetic fields. It can be shown that the trial
function for E in (29) must satisfy the conditions such that
n x 0E = 0 on the conductor surface S and also n x OF
is continuous across the discontinuity boundary S,;, where
§ signifies a small variation in E.

Making use of the symmetry of the Maxwell’s equations
shown in Table I, the variational expression (29) can be
rewritten in slightly different form

_JIy {Hw)* -V x E(r) — E(r)*-V x H(r)} dv — j{s.5, {E(r) x H(r)*} -nds

29

In the foregoing equation, C represents a closed contour in
the transverse plane as shown in Fig. 4. For the open-type
transmission lines, C must be a closed contour enclosing the
transmission line at infinity, while in the case of the metallic
waveguide, C is a cross-sectional boundary of the guide
wall. C, indicates the line in the transverse plane across which
¢ and 2 change discontinuously. E(x,y,8) and H(x,y,p)
are the Fourier transforms of E(r) and H(r), respectively,
and V, = i,(0/0x) + i,(0/0y) where i, and i, are the unit
vectors directed in x and y directions, respectively.

v {E@)* - 6()E@r) + H(®)* - a(r)H(r)} dv

which coincides with that obtained by Berk [2]. The trial
function for H in (30) must satisfy the condition that
n x 8H is continuous across the discontinuity boundary S,.

IV. VARIATIONAL EXPRESSIONS FOR
PROPAGATION CONSTANT

Let us derive next the variational expressions for the
propagation constant of the guided waves traveling along a
uniform transmission line. It is assumed that the materials
involved are inhomogeneous and anisotropic, in general,
but are linear, nondispersive, and dissipation free. Fig. 3
illustrates the transmission line under consideration which
is uniform in a direction of wave propagation z.

To derive the variational expressions for the propagation
constant, divide the volume integral in (28) into the surface
integral over the transverse (xy) plane S and the integral
along the propagation axis z. Further, transforming the
integration with respect to z into the-integration with
respect to the propagation constant f by performing the

(30)

The electromagnetic fields of the wave propagation in the
z direction can be expressed in terms of the linear combina-
tions of the electromagnetic fields of each propagation
mode. Hence

E(x,y.8) = Z O(B + BE(x,y)

H(x,y,f) = Z 8(f + B)H(x,y) (32)

where E,(x,y) and H(x,y) represent the electric and the
magnetic fields of the ith mode, respectively, and j; is its
propagation constant. Substituting (32) into (31), and
carrying out the integration with respect to f, we get

(33)
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where

M, = f {@E ) - 60 )E(x))
S

+ oH(x,y)* - A, H(x,y) — JH{%,9)* -V,
X E{(x,y) +JE(x,y)* " V. x Hy(x,y)} — B{H(x,y)*

: iz X Ei(xsy) - Ei(x7y)* .iz X H;(X,J’)}) ds

_J f (Hi(x,3) x E(x,p)*) - ndl. (34)
C+Cy

The amplitude of the ith mode is determined by the electro-
magnetic fields at t = — oo. If we assume that there exists
only the ith mode alone at ¢+ = — o0, the stationary prob-
lem for L is reduced to that for M, and hence we can
determine the correct values of E;, H,, and §; in such a way
as M; becomes stationary for those correct values. We shall
neglect the subscript i for brevity hereafter. According to
the similar reasoning used in the preceding section, M
given by (34) must be zero for the correct values of E, H,
and B (see Appendix). Therefore, the stationary problem
for M is equivalent to the stationary problem for the
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cedure used to yield (31) from (28), we gét from (21)

L=l f :0 ap fs (E(x,y,ﬁ)* - 5%, E(%, 1.)

- a% {V x EGp B 47" p)V x E("’y"”}) o

(3%)

Dividing the electric field E into the transverse component
e, and the z component i,e,, and applying Gauss’ law (10)
with p = 0, we obtain

E(x,y,B) = e(x,y.p) + i.e.(x,y,) (39
e (x y,ﬂ) = iz : é_—lizvt } éer(x’y7ﬁ) . (40)

JB

For the correct value of e, the following equation, which is
derived from the Maxwell’s equations, must be satisfied:

—i; X {—,Bze,(x,y,ﬁ) + Vi, - (é_lizvt : ée,(x,y,ﬂ))}

= wzﬂ{iz X éet(x3y9ﬂ)} - :a{iz X Vt X ﬂ—lvt X et(xsyaﬁ)}'

propagation constant # given by 41
fs @E@x,»)* - 8x,»)E(x,y) + wH(x,y)* - i(x,)H(x,)
ﬁ — - ]H(x,y)* i Vr X E(xay) + /E(x,y)* : Vt X H(xay)) dS — ] jC+Cd {H(xay) X E(an’)*} ‘n dl (35)

fs HC,p)* i, x E(x,y) — E(e,y)* - i; x H(x,y)) ds

The conditions to the trial function for E in (35) are n X 6E = O on C and n x JE Vchanges continuously across C,,
where & signifies a small variation in E. In view of the transformation given by Table I, (35) can be rewritten in
the form

[s (WE(x,p)* - 85, ME(x,y) + oH(x,y)* + i(x,y)H(x,y)
— JH(x,p)* -V, x E(x,y) + JEG,0)* V, x Hx, ) ds + j [cic, {E(x,y) x H(x,)*} -ndl (36)
[s H@xe,p)y* i, x E(x,y) — E(x,p)* i, x H(x,y)) ds

which coincides with that derived by Berk [2].! The trial
function for H in (36) must satisfy the conditions n x

Substituting (39)-(41) into (38), we get

6H = 0 on C and n x §H changes continuously across C,. L = 3 1 5 f dp f ({wze,(x, y.B0)* - te(x,y,8)
Provided that £ and £ are in the form O™ J - s
— (V; x e(x,3.0)%) A7V, % efx,y,0)}
Exx 8ch 0 Hxx :uxy 0
& = * i = * 0 1 . R
= :’) o (0 G ) T
(37)

-V, x A7V, x efx,y,8)")}
L i, % (@%e(x1B)
-V, x 47V, x e(x,y,p)}
— 0*(i,V, - £¥e(x,y.5)")

the variational expression for the propagation constant can
be expressed in terms of only the transverse component of
the electric field alone, or only the transverse component
of the magnetic field alone. According to the same pro-

1 Note that the last term’s sign in the numerator of (14) in Berk’s
paper [2] is in error. )

LY, e, y,ﬂ))]) ds. “2)
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In the same way as that used to derive (35), we obtain from
(42) the variational expression for § which is expressed in
terms of the transverse electric field component e, as
follows:

Then the conditions to the trial function for e, derived from
the first variation of (45) become in simpler form as follows: 1)
n x de,and i, - £~ (i, V, - £5e,) must vanishon C; 2) n x Je,
and i, - 87 (i,V, - 3e,) must change continuously across C;.

js ({i, x (0*¢*e* — V, x A7V, x e®)} - f{i, x (0’e, — V, x A7V, x e)}

p = -

— 0§V, 8*e,*¥) 871V, - te)) ds

43)

In the preceding equation, e, = e(x,y), &€ = &x,y), and
fi = fi(x,y) are the functions of x and y (independent of z).
In particular, if materials involved are isotropic, & and 4 in
(43) become scalar constants, and (43) reduces to Kuro-

fs (Ve x &) A7V, % &) — w’e* - te) ds

The variational expression for the propagation constant
expressed in terms of transverse magnetic field component
h, can easily be obtained from (45) with the aid of the
transformation given by Table 1. The result is

fs ({i, x (@*f*h* — V, x £71*V, x h*)} - &{i, x (0*fh, — V, x £7'V, x h)}
— @*(@V, - [*h*) - ATV, k) ds — [cac, (Ve X 8714V, x B* — @?@*R )i, - A7V, " fk)}

p =

+ (V, x 7'V, x kb, — o®fh){i, - A7*(EV, - f*hF)}) - n dl

kawa’s variational expression [6] for the waveguide consists
of perfectly conducting walls.
The first variation of (43) is given by

562 f ((V, % e A7V, x &) — wle - be) ds
S

= —f ({i, x (V, x p71*V, x Se* — w*t*5e,*)}
S

A{i x (BPe, — Vi, ETIEV, - te) — Ai, x (e,

-V, x 7'V, x e))}) ds

e f {er x AUV, x b)) -ndl
C+Cq4
- f ((V, x -1V, x de — w’t*de,)
C+Cy

- {i,- é'rl(izV, ge))) ndl + cc. (44)

where C is a closed conductor in the transverse plane as in
the case of (31), while C, indicates the line in the transverse
plane across which &, fi, and their first derivatives change
discontinuously. The term designated as c.c. represents the
complex conjugate of the terms before it. The correct value
of e, in (44) must satisfy the equation given by (41), and
also both n x ¢, and i, - 87 1(i,V, - fe,) must be continuous
across C,. Therefore, the conditions to the trial function
for e, in (43) can be stated as follows: 1) # x 271V, x Je,
and n-(V, x 071V, x de, — w*tde,) must vanish on C;
D nx iV, x Se,and n- (V, x A7V, x Je, — w’tde))
must change continuously across C,. In order to simplify
the conditions to the trial function for e,, let us add the
term of line integral to both the denominator and the
numerator in (43) as follows:

- _[S ((V; x h*)- é_l(vz X hy) — wzht* *fik) ds — jC+Cd (h, x é_l*(vt X h*) + h* x é—l(vt x hy))- ndl’

(46)

The conditions to the trial function for A, in (46) can be
found from the first variation of (46). Those conditions are
as follows: 1) n x 6h, and i, - A~*(i,V, - 4dk,) must vanish
onC;2)n x 6h,and i, - iV, - idh,) must change con-
tinuously across Cj.

V. VARIATIONAL EXPRESSION FOR IMPEDANCE MATRIX

Let us derive in this section the variational expression
for the impedance matrix of waveguide junctions from the
least action principle. The n-port waveguide junction under
consideration is shown schematically in Fig. 5. Suppose
that the materials involved in the junction are linear, non-
dispersive, and dissipation free. In Fig. 5, S; (i = 1,2,---,n)
are the reference planes chosen in the connected waveguides
far enough from the junction so that all the higher modes
above cutoff are extinguished. Let the electric and magnetic
fields within the junction be E; and H;, respectively, when all
ports except the ith port are open circuited and a unit
current is fed into the ith port. Similarly, E; and H; may be
regarded as the electric and magnetic fields within the
junction caused by an input unit current at port j when all
ports except the jth port are open circuited.

Because of the linearity of the system under consideration,
the electromagnetic fields within the junction corresponding
to the unit input currents at ports i and j can then be expres-
sed as

We take for V in (8) the charge and current free region
within the junction, and assume that the junction is operated

jls ({i, x (@*8*e* — V, x i7*V, x e*)} - i{i, x (w?te, — V, x A7V, x e)}
— WiV, 8%e*) - £7T(i,V,  te)) ds — IC+C.1 (Ve x A71*V, x e* — w’t*e )i, - £V, - tey)}

+ (V, x 7V, x e, — w*te){i, £ 1*{,V, 8*¢)}) - ndl

B =

B js (Ve x e g7V, x e) — w’e* - te) ds — §C+Cd (e, x A7V, x ¢*) + e* x A7V, x &) ndl

45)
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Fig. 5. Schematic diagram of n-port waveguide junction.

with single angular frequency w. Then (8) becomes as

J = 5(0) f (E(r)* - 8NE(r) — H(r)* - g(r)H®)) dv
e 9O, |
= o %ZU (48)

where Z;; is a component of an impedance matrix given by

Z;= jcof (H* - iH; — E;* - EE;) dv. 49)
vV

Since both E and H in the foregoing equation are the func-

tions of 4 and ¢, we can rewrite (49), with the aid of (5)

and (16), in the form

Zij =jwf {Hi* 'ﬁHj
4
- a% V x HY -8V x H,.)} dv. (50)

Thus the stationary problem for J given by (48) has been
reduced to the stationary problem for Z;; given by (50)
expressed in terms of H.

The first-order variation of Z,; is given by

1 4

+ 0H; - (=V x E* + jop*H*)} dv
+ f {6H#* x E; — 6H; x E*}-nds (51)
8'+Sa+S,

where S’ is a conductor wall forming a junction, S, is a
surface across which ¢ and £ change discontinuously, and
S, are the reference planes in the connected waveguides, as
shown in Fig. 5. The conditions to the trial function for H
in (50) can then be found from (51) as follows: 1) » x
J6H = 0 on S,; 2) n x 6H changes continuously across S,.

VI. ConcLusiON

A novel approach to derive the variational expressions for
electromagnetic field problems has been proposed. It has
been shown that the variational expressions for a resonant
frequency of a cavity resonator, a propagation constant of a

uniform transmission line, and an impedance matrix of a .

waveguide junction can be derived systematically all from

|
I transmission
r
n ‘_J' line
|
I
]
|

Fig. 6. Surface S(S; + S2 + S.) used in evaluation of integration
in (A3), S, is a cylindrical side surface with infinite radius, and .S,
and S, are parallel surfaces transverse to the propagation direction
of the transmission line.

the least action principle. We have shown that the Maxwell’s
equations themselves can also be yielded by solving the
stationary problem of the action J.

Though we have assumed the materials contained in the
system under consideration are linear and loss free, the
variational expressions derived in the present paper are
applicable to the system which involves anisotropic and/or
inhomogeneous materials.

APPENDIX

For the charge and the current free region V, (8) is
reduced to

J = fco dff (E(r,w)* - &(r,w)E(r,0)
0 v
— H(r,w)* : i(r,w)H(r,w)) dv. (A1)

Provided that E and H are the correct fields satisfying the
Maxwell’s equations for the loss-free region, the following
equation ‘

V- (E x H¥ = jo(E*-¢tE — H*- fH)  (A2)

is derived. Substituting (A2) into (A1) and applying Gauss’
theorem, reduce (Al) to

J=f°°dff (_iExH*)-nds.
0 s \Jao

As shown in Fig. 6, the surface S consists of Sy, S,, and S_,.
J given by (A3) vanishes for a propagation mode because
(E x H*)-nis zero on S,, and also the unit normal vectors
non S, and S, direct to opposite directions. Therefore, the
action J, and hence L, becomes zero for a propagation
mode. We can conclude, therefore, that M must be zero
for a correct propagation mode.

(A3)
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